Rút gọn biểu thức
A=\(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}........\)
Cho biểu thức:
P = \(\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
a. Tìm điều kiện để P xác định
b. Rút gọn P
c. Tính giá trị của P biết a3 - a2 + 2 = 0
\(\frac{\text{1}}{a^2-5a+6}\)+ \(\frac{\text{1}}{a^2-7a+12}\)+ \(\frac{1}{\text{}\text{a}\text{ }^2-9a+20}\)+ \(\frac{1}{^2-11a+30}\)
Rút gọn biểu thức
rút gọn biểu thức sau:
M = 1/ a2 - 5a + 6 + 1 / a2 - 7a + 12 + 1 / a2 - 9a + 20 + 1 / a2 - 11a +30
rút gọn A=1/a^2-5a+6+1/a^2+7a+6+1/a^2-9a+20
1) Giải phương trình
\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
2) Cho biểu thức \(S=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)
a) Rút gọn S
b) Khi – 5 < a < 0 Tìm giá trị lớn nhất của S
RÚT GỌN B=\(\left(\frac{a^2}{a^3-4a}-\frac{10}{5a+10}-\frac{7}{14-7a}\right):\left(a+2-\frac{a^2-6}{a-2}\right)\)
Cho A = \(A=\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\)
a) rÚT GỌN A
b) TIM x DE A= 2
Chứng minh rằng:\(\frac{a}{1+a^2}+\frac{b}{1+4b^2}+\frac{c}{1+9c^2}=\frac{abc\left(5a+16b+27c\right)}{\left(a+2b\right)\left(a+3c\right)\left(2b+3c\right)}\)
biết các số a, b, c thỏa mãn \(\frac{1}{bc}+\frac{2}{ac}+\frac{3}{ab}=6\)và các biểu thức có nghĩa