Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
tính \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a + b + c = 2010 và \(\frac{1}{a+b}\) + \(\frac{1}{b+c}\) + \(\frac{1}{c+a}\) = \(\frac{1}{3}\). Tính S = \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a + b + c = 100 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính giá trị biểu thức : \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Bài 1: Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có GTLN.
Bài 2: Tìm x, biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\).
Bài 3: Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\).
Tính S=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
cho a+b+c=2017 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a + b+ c = 2607 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{60}\)
tính S =\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)