Cho abc=1 CMR:\(a+b+c\ge\frac{ab+1}{b+1}+\frac{bc+1}{c+1}+\frac{ca+1}{a+1}\)
Cho a,b,c>0 và abc=1
CMR\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a,b,c>0 và abc=1
CMR \(1+\frac{3}{a+b+c}\ge\frac{6}{ab+bc+ca}\)
Cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
CMR \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{abc}\)
Cho a,b,c\(\ge1\)CMR \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)
Cho a;b;c> 0 và \(ab\ge12\)\(;\)\(bc\ge8\)\(.\)\(CMR\)\(:\)
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
cho a,b,c>0 thỏa mãn điều kiện a+b+c=1
chứng minh\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\ge\frac{1}{4}\)
Cho a; b; c là các số thực dương thỏa mãn ab + bc + ca = 3.
CMR: \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)
Cho 3 số thực dương a , b , c.
CMR: \(1+\frac{3}{ab+bc+ca}\ge\frac{6}{a+b+c}\\ \)