M=a/ab+a+1 +b/bc+b+1 +c/ca+c+1
=ac/abc+ca+c +abc/abc^2+abc+ac +c/ca+c+1
=ac/1+ca+c +1/c+1+ac +c/ca+c+1
=ac+1+c/1+ca+c
=1
M=a/ab+a+1 +b/bc+b+1 +c/ca+c+1
=ac/abc+ca+c +abc/abc^2+abc+ac +c/ca+c+1
=ac/1+ca+c +1/c+1+ac +c/ca+c+1
=ac+1+c/1+ca+c
=1
1,cho a,b,c là các số dương thỏa mãn abc=1
Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
Cho a, b, c là các số dương thỏa mãn: ab+bc+ca=abc. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
Cho abc=1 , tính giá trị
C=\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
Cho abc = 1 . Tính giá trị của biểu thức M = \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) và a,b,c khác 0. tính giá trị biểu thức \(N=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Tính giá trị biểu thức \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\).
Cho a,b,c khác 0\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), Tính giá trị biểu thức A= \(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
Cho a, b, c thỏa mãn a + b + c = 1. Tính giá trị biểu thức \(H=\frac{ab+b+2c}{b+c}+\frac{bc+c+2a}{c+a}+\frac{ca+a+2b}{a+b}\)
cho a,b,c là các số thực khác 0 và thỏa mãn ab+bc+ca=1.
Tính giá trị của biểu thức: M=\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}-\frac{2}{\left(a-b\right)\left(b+c\right)\left(c+a\right)}\)