Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nhung nguyễn

cho a+b+c=1  

chứng minh \(\frac{3}{ab+ac+ab}\)+\(\frac{2}{a^2+b^2+c^2}\) >14

Hoàng Lê Bảo Ngọc
2 tháng 6 2016 lúc 19:06

Đề bài đúng : Cho a + b + c = 1 . Chứng minh : \(\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}>14\)

Ta có : \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(b+c\right)^2\ge0\\\left(c+a\right)^2\ge0\end{cases}\Rightarrow a^2+b^2+c^2\ge}ab+bc+ac\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\Rightarrow\frac{1}{ab+bc+ac}\ge\frac{3}{\left(a+b+c\right)^2}\)Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\), ta được  ;

\(\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}=2\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ac}\right)+\frac{2}{ab+bc+ac}\ge\frac{2.4}{\left(a+b+c\right)^2}+\frac{2}{ab+bc+ac}\ge\frac{8}{\left(a+b+c\right)^2}+\frac{6}{\left(a+b+c\right)^2}=14\)

Dấu "=" không xảy ra.

Vậy ta được điều phải chứng minh.

_ FTBOYS_
2 tháng 6 2016 lúc 19:46

a có : a + b 2 ≥ 0 b + c 2 ≥ 0 c + a 2 ≥ 0 ⇒a 2 + b 2 + c 2 ≥ ab + bc + ac⇒ a + b + c 2 ≥ 3 ab + bc + ac ⇒ ab + bc + ac 1 ≥ a + b + c 2 3 Áp dụng bất đẳng thức x 1 + y 1 ≥ x + y 4 , ta được ; ab + bc + ac 3 + a 2 + b 2 + c 2 2 = 2 a 2 + b 2 + c 2 1 + 2ab + 2bc + 2ac 1 + ab + bc + ac 2 ≥ a + b + c 2 2.4 + ab + bc + ac 2 ≥ a + b + c 2 8 + a + b + c 2 6 = 14 Dấu "=" không xảy ra. Vậy ta được điều phải chứng minh.  Đúng 1 Gửi câu trả lời của bạn Hãy gửi một câu trả lời để giúp nhung nguyễn ﴾/thanhvien/kikinguyencute@gmail.com﴿ giải bài toán này, bạn có thể nhận được điểm hỏi đáp và phần thưởng của Online Math dành cho thành viên tích cực giúp đỡ các bạn khác trên Online Math! Gửi câu trả lời  Nội quy chuyên mục ﴾/tin‐ tuc/Cac‐thong‐tin‐can‐biet‐khi‐ Trả lời 1 Đánh dấu cho a+b+c=1 chứng minh ab + ac + ab 3 + a 2 + b 2 + c 2 2 >14 {


Các câu hỏi tương tự
Dung Đặng Phương
Xem chi tiết
abc081102
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
Dra Hawk
Xem chi tiết
Hà Lê
Xem chi tiết
Prissy
Xem chi tiết
Phúc Long Nguyễn
Xem chi tiết
Phạm Vũ Thanh Nhàn
Xem chi tiết