Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b)
= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1)
= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)]
= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)]
Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1
Và khi đó:
P = x²/(y + z) + y²/(z + x) + z²/(x + y)
Sử dụng BĐT Cauchy:
♠ x²/(y + z) + (y + z)/4 ≥ x
♠ y²/(z + x) + (z + x)/4 ≥ y
♠ z²/(x + y) + (x + y)/4 ≥ z
Cộng vế 3 BĐT trên ta được
P + (x + y + z)/2 ≥ x + y + z
Hay:
P ≥ (x + y + z)/2
Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3
Nên P ≥ 3/2 (và ta được đpcm)
https://olm.vn/hoi-dap/question/1036432.html
vào đây xem nhé,cách ngắn hơn