Cho a,b,c > 0 thỏa \(\left(a+2b\right)\left(\frac{1}{b}+\frac{1}{c}\right)=4\) và \(3a\ge c\)
Chứng minh rằng : \(\frac{a^2+b^2}{ac}\ge1\)
Cho \(a,b,c>0\)thỏa \(\left(a+2b\right)\left(\frac{1}{b}+\frac{1}{c}\right)=4\)và \(3a\ge c\)
Chứng minh rằng \(\frac{a^2+2b^2}{ac}\ge1\)
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)
Cho a,b,c>0 thỏa mãn \(a+b+c\le3\)
Chứng minh \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}+\frac{1}{\left(2b+c\right)\left(2a+c\right)}+\frac{1}{\left(2c+a\right)\left(2b+a\right)}\ge\frac{3}{\left(a+b+c\right)^2}\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\). Chứng minh rằng:
\(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\ge\frac{\sqrt{3}}{3}\).
Cho a,b,c là các số thỏa \(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3=\frac{1}{8}\)
Chứng minh rằng: \(\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)
Cho a,b,c là các số thỏa mãn abc=1.Chứng minh \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}\ge a\left(b+1\right)+b\left(c+1\right)+c\left(a+1\right)\)
Cho a,b,c dương thỏa mãn điều kiện \(a^2b^2c^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge a+b+c+ab+bc+ca+3\)
Tìm GTNN của biểu thức:
\(P=\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}\)
Cho a,b,c là các số thực dương. CHỨNG MINH RẰNG : \(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)