lần lượt nhân c,b,a vào tỉ số đầu rồi rút gọn đc ay-bx=cx-az=bz-cy => x/a=y/b=z/c(1)
Theo bđt bunhi thì dấu "=" xảy ra khi x/a=y/b=z/c ,tức là (1) đúng
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
lần lượt nhân c,b,a vào tỉ số đầu rồi rút gọn đc ay-bx=cx-az=bz-cy => x/a=y/b=z/c(1)
Theo bđt bunhi thì dấu "=" xảy ra khi x/a=y/b=z/c ,tức là (1) đúng
Cho a,b,c là 3 số khác 0 thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
CMR \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Cho a,b,c là ba số không âm thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
Chứng minh rằng:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
CM CÁC HẰNG ĐẲNG THỨC ;
\(\left(A^2+B^2+C^2\right)\left(X^2+Y^2+Z^2\right)=\left(AX+BY+CZ\right)^2+\left(AY-BX\right)^2+\left(AZ-CX\right)^2+\left(BZ-CY\right)^2\)
CMR: nếu \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)thì :
\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ã+by+cz\right)^2\)
Cho a,b,c,d là các số thực bất kỳ thỏa mãn \(\left(a^2+b^2+c^2\right)\cdot\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a,b,c\ne0\right)\)
Cho ax + by + cz = 0 và a + b + c = 2016. Tính giá trị của:
A = \(\frac{bc\left(y-z\right)^2+ac\left(z-x\right)^2+ab\left(x-y\right)^2}{ax^2+by^2+cz^2}\)
Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\left(a,b,c\ne0\right)\).CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). (Cách khác câu tương tự)
Cho ax+by+cz=0 và a+b+c =1/2018 Chứng minh rằng \(\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\) =2018