Theo Holder , ta có : \(\left(a^3+b^3+c^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(a+b+c\right)^3\)
\(\Rightarrow\left(a+b+c\right)^3\le9\left(a^3+b^3+c^3\right)\)
Ta có : \(\frac{a^3+b^3+c^3}{abc}+\frac{54abc}{\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^3}{9abc}+\frac{54abc}{\left(a+b+c\right)^3}\)
Đặt \(t=\frac{\left(a+b+c\right)^3}{27abc}\) thì \(t\ge1\) , khi đó : \(\frac{\left(a+b+c\right)^3}{9abc}+\frac{54abc}{\left(a+b+c\right)^3}=3t+\frac{2}{t}=t+\left(2t+\frac{2}{t}\right)\ge1+2\sqrt{2t.\frac{2}{t}}=5\)
Dấu "=" xảy ra khi a = b = c = 1
kết quả =1 nha bạn Hoàng Lê Bảo Ngọc viết lời giải rồi nha ai k minh minh thank you