Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nam Khanh Le

 cho a,b,c>0 và thỏa mãn a+b+c=1. CMR:

a^2+b^2+c^2+2\( { \sqrt{3abc}}\)<=1

Nguyễn Anh Quân
28 tháng 1 2018 lúc 8:46

Áp dụng bđt (x+y+z)^2 >= xy+yz+zx với x,y,z > 0 ta có: 

(ab+bc+ca)^2 >= 3.(ab.bc+bc.ca+ca.ab) = 3abc.(a+b+c) = 3abc ( vì a+b+c = 1 )

=> a^2+b^2+c^2+2\(\sqrt{3abc}\)< = a^2+b^2+c^2+2\(\sqrt{\left(ab+bc+ca\right)^2}\)= a^2+b^2+c^2+2(ab+bc+ca) = (a+b+c)^2 = 1

Dấu "=" xảy ra <=> a=b=c=1/3

Vậy GTNN của a^2+b^2+c^2+2\(\sqrt{3abc}\)= 1 <=> a=b=c=1/3

Tk mk nha