Cho a, b, c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) . CMR :
\(\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a, b, c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) . CMR
\(\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c>0 và a+b+c=3. Chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}\)
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
Cho a,b,c lớn hơn 0 và \(a+b+c\le6\)
Chứng minh:\(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{abc}\ge\frac{27}{8}\)
Cho a,b,c>0 và a+b+c\(\le\)6
CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}+\frac{1}{abc}\ge\frac{19}{8}\)
cho a,b,c \(\ge0\) và \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cmr \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
Cho a,b,c\(\ge\)0 và \(a^2+b^2+c^2=1.\)CMR:\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}.\)
cho a,b,c >0 và abc=1.
c/m\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\ge\frac{1}{4}\)