CHO A,B,C>0 VÀ A+B+C=ABC.CMR
\(\frac{A}{B^3}+\frac{B}{C^3}+\frac{C}{A^3}>=1\)
MN OI GIÚP E MAI E ĐI HOK RỒI
EM TÍCH CHO
cho a,b,c>0,abc=1.cm a+b+c>=\(\frac{1+a}{1+b}\)+\(\frac{1+b}{1+c}\)+\(\frac{1+c}{1+a}\)
cho x,y,z>0,xyz=1.cm \(\frac{x^4y}{x^2+1}\)+\(\frac{y^4z}{y^2+1}\)+\(\frac{z^4x}{z^2+1}\)>= 3/2
mn ơi giúp e giải bài này
mai e đihok rồi
em tcks cho
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều
CHO A,B,C>0.CMR
\(\frac{\sqrt{a+2b}}{\sqrt{a+2c}}+\frac{\sqrt{b+2c}}{\sqrt{b+2a}}+\frac{\sqrt{c+2a}}{\sqrt{c+2b}}>=3\)=3
MN ƠI GIÚP E MAI E ĐI HỌC RỒI
E ĐANG CÂN GÁP E TÍCH CHO
cho \(a,b,c>0,abc=1\).CMR
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
sử dụng bđt bunhia nhé mn
MN giúp e với
cho a,b,c>0,abc=1.cm a+b+c>= \(\frac{1+a}{1+b}\)+\(\frac{1+b}{1+c}\)+\(\frac{1+c}{1+a}\)
AI GIỎI BĐT GIẢI GIÚP E VỚI
MAI E ĐI HOK RỒI
E TÍCH CHO.
cho a>0,b>0,a+b=1.tìm min
A=\(\frac{a}{1+b}\)+\(\frac{b}{1+a}\)+\(\frac{1}{a+b}\)
mn ơi giúp e giải bài này với
mai e đi hok rồi
e ticks cho
Làm giúp mình với mai nộp rồi
Cho a,b,c>0 cmr
a, \(\frac{1}{a^2+b^2+abc}+\frac{1}{b^2+c^2+abc}+\frac{1}{c^2+a^2+abc}< \backslash=\frac{1}{abc}\)
b,(a+1)(b+1)(c+1)>/=\(\left(1+\sqrt[3]{abc}\right)^3\)