Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) với \(x=a^2+2bc;y=b^2+2ac;z=c^2+2ab\)
Ta có : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=\frac{9}{\left(a+b+c\right)^2}\)
\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( Vì a + b + c = 1)