Cho a, b, c > 0, a + b + c = 1
CMR : \(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\)
Cho ba số duong a, b, c thỏa mãn abc = 1. CMR:
\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)
cho a, b, c > 0 và abc=1.
Chứng minh rằng: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
cho các số thực a, b, c > 0 và abc =1. Tìm max của
\(P=\dfrac{1}{a+2b+3}+\dfrac{1}{b+2c+3}+\dfrac{1}{c+2a+3}\)
Cho a,b,c thỏa mãn ab+ac+bc=a+b+c+abc ; 3+ab ≠ 2a+b; 3+bc ≠ 2b+c;3+ac ≠2c+a.
C/M: \(\dfrac{1}{3+ab-\left(2a+b\right)}+\dfrac{1}{3+bc-\left(2b+c\right)}+\dfrac{1}{3+ac-\left(2c+a\right)}=1\)
cho a,b,c \(\ge0\) tm abc=1
cmr \(\dfrac{1}{2a^3+3a+2}+\dfrac{1}{2b^3+3b+2}+\dfrac{1}{2c^3+3c+2}\ge\dfrac{3}{7}\)
cho a+b+c=3
cmr \(\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}\ge1\)
Cho a,b,c > 0 . Cmr:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}+\dfrac{4}{a+2b+c}\)