\(vì:a,b,c>0\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)
\(Cosi:\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\ge\dfrac{2}{\dfrac{a+b}{2}}=\dfrac{4}{a+b}\)
\(\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}\right)\le\dfrac{1}{16}\left(\dfrac{8}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}.tươngtự:\dfrac{4}{a+b+2c}\le\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{2c};\dfrac{4}{a+2b+c}\le\dfrac{1}{4a}+\dfrac{1}{2b}+\dfrac{1}{2c}.\text{cộng vế theo vế ta được:}\dfrac{4}{a+2b+c}+\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đpcm}\right)\)
Áp dụng BĐT \(\dfrac{1}{x+y+z+t}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\) với các số dương
Ta có: \(\dfrac{4}{a+a+b+c}\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)
\(\dfrac{4}{a+2b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Cộng vế với vế:
\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
* Ta cm bđt : \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\forall ab\)
+ \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vì bđt thức cuối luôn đúng mà các phép biến đổi trên là tương đương nên ta có đpcm
Dấu "=" \(\Leftrightarrow x=y\)
+ Áp dụng bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu "=" \(\Leftrightarrow x=y\) ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) Dấu "=" xảy ra \(\Leftrightarrow b=c\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+c}\) Dấu "=" xảy ra \(\Leftrightarrow a=c\)
Do đó : \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
+ Áp dụng bđt trên một lần nữa ta có :
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\) Dấu "=" xảy ra \(\Leftrightarrow a=c\)
\(\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{1}{a+b+2c}\) Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\dfrac{1}{a+b}+\dfrac{1}{c+a}\ge\dfrac{4}{2a+b+c}\) Dấu "=" xảy ra \(\Leftrightarrow b=c\)
Do đó : \(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{4}{2a+b+c}\)
\(+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)
=> đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)