bài này hôm nọ bọn mình thi khảo sát nè :)
bài này hôm nọ bọn mình thi khảo sát nè :)
Cho a,b,c là các số thực dương thỏa a+b+c=3
Chứng minh \(\dfrac{1}{2+a^2b}+\dfrac{1}{2+b^2c}+\dfrac{1}{2+c^2a}\ge1\)
1)Nếu a+b+c=3 thì \(\dfrac{a^2}{a+2b}+\dfrac{b^2}{b+2c}+\dfrac{c^2}{c+2a}\ge1\)
Cho a, b,c dương. cmr: \(\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\ge\dfrac{1}{5}\left(a^2+b^2+c^2\right)\)
cho a,b,c>0 Sao cho a+b+c=3
CMR \(\dfrac{a^3}{a+2b^3}+\dfrac{b^3}{b+2c^3}+\dfrac{c^3}{c+2a^3}\ge1\)
Cho ba số duong a, b, c thỏa mãn abc = 1. CMR:
\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3.CMR
\(\dfrac{1}{2a^2+3}+\dfrac{1}{2b^2+3}+\dfrac{1}{2c^2+3}\ge\dfrac{3}{5}\)
Cho a,b,c là các số dương. CMR
\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}+\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}+\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}\)
cho a,b,c \(\ge0\) tm abc=1
cmr \(\dfrac{1}{2a^3+3a+2}+\dfrac{1}{2b^3+3b+2}+\dfrac{1}{2c^3+3c+2}\ge\dfrac{3}{7}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)