Đặt A=\(\sum\dfrac{a^3}{a+2b^3}\)
Ta có \(a^3+1+1\ge3a\Rightarrow a\le\dfrac{a^3+2}{3}\)\(\Rightarrow\sum\dfrac{a^3}{a+2b^3}\ge\sum\dfrac{a^3}{\dfrac{a^3+2}{3}+2b^3}=\sum\dfrac{3a^3}{a^3+6b^3+2}\)
Đặt \(a^3=x;b^3=y;c^3=z,taco:x+y+z\ge3\)
Mà A=\(3\left(\sum\dfrac{x}{x+6y+2}\right)=3\left(\sum\dfrac{x^2}{x^2+6xy+2x}\right)\ge3\dfrac{\left(x+y+z\right)^2}{\sum x^2+\sum6xy+2\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+4\left(xy+yz+zx\right)+2\left(x+y+z\right)}\)
Mà \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\), đặt x+y+z=m
Ta có \(A\ge\dfrac{3m^2}{m^2+\dfrac{4}{3}m^2+m}\), cần \(\dfrac{3m^2}{\dfrac{7}{3}m^2+2m}\ge1\Leftrightarrow3m^2\ge\dfrac{7}{3}m^2+2m\Leftrightarrow\dfrac{2}{3}m\ge2\Leftrightarrow m\ge1\left(LĐ\right)\)
=> BDT cần chứng minh luôn đúng
dấu = xảy ra <=> a=b=c=1