Mình theo một số nguồn trên Internet thì đề đúng là : \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}.\)
Ta có :
\(a^2+b^2+c^2-2bc-2ca+2ab\)
\(=\left(a+b-c\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)
Dấu bằng xảy ra khi \(a+b=c\)
Mà \(\frac{5}{3}< \frac{6}{3}=2\)
\(\Rightarrow a^2+b^2+c^2< 2\)
\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)
\(\Rightarrow2bc+2ac-2ab< 2\)
Do a ; b ; c > 0
\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy ...