Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
titanic

Cho a,b,c>0 có tổng bằng 1. Chứng minh\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

ngonhuminh
19 tháng 4 2017 lúc 14:32

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{\left(a+b+c\right)}=\frac{9}{1}=9\\ \)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Hết => không điểm => DBNT 

Ngu Ngu Ngu
22 tháng 4 2017 lúc 21:42

Bài làm của bạn kia chưa chặt chẽ! Mà cho mình hỏi DBNT là gì vậy? :)

Giải:

Áp dụng BĐT Cô si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế 2 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) (Đpcm)

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)

Áp dụng BĐT Cô si với mọi số nguyên dương 

\(\left(\frac{a}{b}+\frac{b}{a}\right),\left(\frac{c}{b}+\frac{b}{c}\right),\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)

\(\Rightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Mà a + b + c = 1 

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

PaiN zeD kAmi
30 tháng 3 2018 lúc 18:41

súc vật tự đăng tự trả lời 


Các câu hỏi tương tự
songoku3
Xem chi tiết
Xem chi tiết
thiên thảo
Xem chi tiết
꧁WღX༺
Xem chi tiết
BUI THI HOANG DIEP
Xem chi tiết
Không Cần Biết 2
Xem chi tiết
Lục Kim Duy
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
Hoàng Nguyễn Lê Na
Xem chi tiết