\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{\left(a+b+c\right)}=\frac{9}{1}=9\\ \)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Hết => không điểm => DBNT
Bài làm của bạn kia chưa chặt chẽ! Mà cho mình hỏi DBNT là gì vậy? :)
Giải:
Áp dụng BĐT Cô si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế 2 BĐT trên ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)
Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) (Đpcm)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)
Áp dụng BĐT Cô si với mọi số nguyên dương
\(\left(\frac{a}{b}+\frac{b}{a}\right),\left(\frac{c}{b}+\frac{b}{c}\right),\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)
\(\Rightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Mà a + b + c = 1
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)