Cho a + b +c =0 Chứng minh
( ab + bc + ca ) 2 = a2b2 + b2c2 + a2c2
Tính giá trị của biểu thức a4 + b4 + c4, biết rằng a + b + c =1,ab+bc+ca=-1 và abc=-1
Cho x+y=10.
CMR a4 + b4 +c4 = 2 . ( a2b2 + b2c2 +c2a2 )
M.n giúp e vs ạ ...................... . Nhanh nhanh giùm em ạ
Cho a,b,c >=0. CMR
a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ca)
cho a,b,c >0 thoa man a+b+c=3.chung minh (a^2+bc)/(b+ca) + (b^2+ca)/(c+ab) + (c^2+ab)/(a+bc) ≥ 3
Cho a,b,c khác 0 và ab+bc+ca>0.
Tính giá trị biểu thức A=ab/c^2+bc/a^2+ca/b^2
Cho a,b,c>0. Chứng minh: \(a^2+b^2+c^2\ge3\left(ab+bc+ca\right)\) và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
Cho a,b,c là các số dương. CMR \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)Mọi người giúp em với ạ!
cho a+b+c=0 . CMR a, ( ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2 b, a^4+b^4+c^4=2(ab+bc+ca)^2
CMR: a= b= c . Nếu,
a, 2( a2 + b2 + c2 ) = ab + bc + ca
b,2 ( a2 + b2 + c2 ) - 2( ab + bc + ca ) = 0
c, ( a + b + c )2 = 3( ab + bc + ca )