Cho a,b,c>0. CM:
\(2.\left(\frac{a}{b+2C}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a,b,c là 3 số thực đôi một phân biệt. CMR:
\(3+\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}=\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}\)
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)
\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}+\frac{c^2a^3}{b^2+\left(c+a\right)^3}+\frac{a^2b^3}{c^2+\left(a+b\right)^3}\ge\frac{9abc}{4\left(3abc+a^2c+b^2a+c^2b\right)}\)voi a,b,c>0
Với \(0< a,b,c< \frac{1}{2}\)thỏa mãn a+b+c = 1 . CMR:
\(P=\frac{1}{a\left(2b+2c-1\right)}+\frac{1}{b\left(2c+2a-1\right)}+\frac{1}{c\left(2a+2b-1\right)}\ge27\)
cho a;b;c là các số thực đôi một khác nhau thỏa mãn
\(3+\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}=\)\(\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}\)
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{\left(2b+c+2c+a+2a+b\right)}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Cho a,b,c>0 thỏa mãn \(a+b+c\le3\)
Chứng minh \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}+\frac{1}{\left(2b+c\right)\left(2a+c\right)}+\frac{1}{\left(2c+a\right)\left(2b+a\right)}\ge\frac{3}{\left(a+b+c\right)^2}\)
Cho a,b,c>0 thỏa mãn a+b+c=3. CMR: \(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\)