Cho a, b, c > 0 và a + b + c = 6. CMR :
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Cho a, b, c > 0 và a + b + c = 6. CMR :
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Cho a,b,c lớn hơn 0:
\(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{c}{a+b}}+\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}\right)\)
Cho a,b,c > 0 và \(n\ge2\)(n tự nhiên).CMR:
\(\sqrt[n]{\frac{a}{b+c}}+\sqrt[n]{\frac{b}{c+a}}+\sqrt[n]{\frac{c}{a+b}}>\frac{n}{n-1}\sqrt[n]{n-1}\)
cho a+b+c=6 cmr\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Cho \(x,y,z\ge0\), không đồng thời bằng 0 CMR \(\sqrt[3]{\frac{a}{b+c}}+\sqrt[3]{\frac{b}{c+a}}+\sqrt[3]{\frac{c}{a+b}}\ge2\)
cho 3 so duong a,b,c tm a+b+c=6
cmr\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
c/m với a,b,c > 0 thì \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2\)
Cho a,b,c>0 ; a+b+c=6.
Chứng minh: \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)