Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2]=2(ab+bc+ac)^2$
Ta có đpcm.