1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
Cho a, b, c > 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). CMR: \(\sqrt{\frac{a}{a+bc}}+\sqrt{\frac{b}{b+ca}}+\sqrt{\frac{c}{c+ab}}\le\frac{3}{2}\)
Cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
CMR \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{abc}\)
Cho các số a, b, c > 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). CMR: \(\sqrt{\frac{a}{a+bc}}+\sqrt{\frac{b}{b+ca}}+\sqrt{\frac{c}{c+ab}}\le\frac{3}{2}\)
Cho 3 số dương a,b,c và a+b+c = 1. CMR:
\(\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca}+b}\ge3\)
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}\: }+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ca}}\)
Với a,b,c >0 . Cm
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
cho a,b,c >0; a+b+c=3:
Tìm GTLN của \(P=\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\)
1.cho a,b,c>0 và \(a^2+b^2+c^2=1\). tìm min \(P=\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\)
2. cho \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\)CMR \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\)với n là số tự nhiên lẻ
3.cho \(0\le a,b,c\le1\)CMR \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3abc\)
4.cho \(0\le a,b,c\le1\)tìm max \(p=x\sqrt{1-y^2}+y\sqrt{1-x^2}+\frac{1}{\sqrt{3}}\left(x+y\right)\)
Các bạn giúp mình nha, mặc dù mình biết là không ai trả lời câu hỏi của mình, nhưng mình vẫn tin ở các bạn sẽ giúp mình