Từ \(abc\le\left(\frac{a+b+c}{3}\right)^3\Rightarrow a+b+c\ge3\)
Ta có BĐT phụ \(\frac{1}{2a+1}\ge-\frac{2}{9}a+\frac{5}{9}\)
\(\Leftrightarrow\frac{4\left(a-1\right)^2}{9\left(2a+1\right)}\ge0\forall0< a< 3\) (đúng)
Tương tự ta cũng có:
\(\frac{1}{2b+1}\ge-\frac{2}{9}b+\frac{5}{9};\frac{1}{2c+1}\ge-\frac{2}{9}c+\frac{5}{9}\)
Cộng theo vế 3BĐT trên ta có:
\(VT\ge-\frac{2}{9}\left(a+b+c\right)+\frac{5}{9}\cdot3=1=VP\)
Khi a=b=c=1
Vì abc=1 nên tồn tại x,y,z sao cho \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
\(VT=\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}=\frac{x^2}{x^2+2xz}+\frac{y^2}{y^2+2xy}+\frac{z^2}{z^2+2yz}\)
Áp dụng BĐT cauchy-schwarz:
\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu = xảy ra khi x=y=z hay a=b=c=1