Ta có \(AB=AD\Rightarrow\Delta ABD\)vuông cân tại A
\(\Rightarrow\widehat{ADI}=45^0\Rightarrow\widehat{EID}=45^0\Rightarrow\Delta IED\)vuông cân tại \(E\Rightarrow IE=ED\)
Xét \(\Delta ABD\)có \(IE\)song song \(AB\Rightarrow\frac{IB}{ID}=\frac{AE}{ED}\)
Mà \(IE=ED\Rightarrow\frac{IB}{ID}=\frac{AE}{IE}\left(đpcm\right)\)
b. Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{HC}\)
Có \(\widehat{B}+\widehat{C}=90^0;\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=\widehat{C}\)
Lại có \(\widehat{BAH}=\widehat{AIE}\)Vì 2 góc ở vị trí so le trong \(\Rightarrow\widehat{C}=\widehat{AIE}\)
Xét \(\Delta ABC\)và \(\Delta EAI\)
có \(\hept{\begin{cases}\widehat{A}=\widehat{E}=90^0\\\widehat{C}=\widehat{AIE}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta EAI\left(g-g\right)}\)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{IE}\)
Lại có \(\frac{AE}{EI}=\frac{IB}{ID}\Rightarrow\frac{IB}{ID}=\frac{AB}{AC}\Rightarrow\frac{IB^2}{ID^2}=\frac{HB}{HC}\left(đpcm\right)\)