Cho các số a,b,c,x,y,z khác 0 và thỏa mãn \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Cho a, b, c và x, y, z là các số khác nhau và khác 0. CMR :
Nếu \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) và \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)thì \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho a,b,c và x,y,z là các số khác nhau và khác không. Chứng minh rằng nếu :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) và \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho a,b,c khác 0 và các số a,b,c thỏa mãn \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính:\(x^{2005}+y^{2005}+z^{2005}\)
CHo a,b,b và x,y,z là ác số khác 0, thỏa mãn các điều kiện:
a+b+c=0, x+y+z=0, \(\frac{x}{a}\) +\(\frac{y}{b}\) + \(\frac{z}{c}\) =0
Chứng minh a2x+b2y+c2z = 0
a/ Cho a,b,c thỏa mãn : a+b+c=0 và a^2+b^2+c^2=14
tính A khi A= a^4+b^4+c^4
b/ cho a,b,c khác 0. Tính D= x^2011+y^2011+z^2011
biết x,y,z thỏa mãn :\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Câu 1: Cho\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\).CM rằng\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Câu 2: Cho x,y,z đôi một khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\).Tính \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Câu 3: Cho a,b,c thoả mãn a+b+c=0 và\(a^2+b^2+c^2=14\).Tính \(B=a^4+b^4+c^4\)
Pạn nào làm dc thì giúp mik vs @!
1,cho a,b,c,x,y,z khác 0 thỏa mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
c/m: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
cho\(a,b,c\)và x,y,z khác nhau và khác o
c/m\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)và \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\)
thì \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)