Áp dụng t/c dãy tỉ số bằng nhau rồi suy ra p là số nguyên tố (p = 2)
Áp dụng t/c dãy tỉ số bằng nhau rồi suy ra p là số nguyên tố (p = 2)
cho (a+b-c)/d=(b+c-d)/a=(c+d-a)/b=(d+a-b)/c
cmr: P là số nguyên vs P= \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho a,b,c,d>0.CMR:\(M=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)Không là số tự nhiên
Cho\(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\) với a,b,c,d là các số nguyên dương.
CMR: S không phải là số tự nhiên
cho a;b;c;d là các số nguyên dương
CMR:
\(1
các bạn ơi giúp mình với
cho a,b,c,d là các số nguyên dương
cmr \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\ge\frac{4}{3}\)
Cho a, b, c, d là 4 số nguyên bất kỳ.
CMR:
\(x=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)
không phải là 1 số nguyên
Cho a,b,c,d là các số thực thỏa mãn : \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)+2d
Tính M =\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho dãy tỉ số bằng nhau :
a) \(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}\)
Tính : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}-\left(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\right)\)