\(3a^2+2b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow a=2b;b=3a\)
Bạn chỉ cần thay vào thì nó tự triệt tiêu biến, còn mỗi const thôi nhé !
\(3a^2+2b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow a=2b;b=3a\)
Bạn chỉ cần thay vào thì nó tự triệt tiêu biến, còn mỗi const thôi nhé !
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
cho |a| khác |b| và ab khác 0 thoả mãn \(\frac{a-b}{a^2+ab}\) +\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)
cho |a| ≠ |b| và ab ≠ 0 thoả mãn \(\frac{a-b}{a^2+ab}\)+\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)
tìm a, b biết a>-2b>0, a-b=6 và \(2a^3+7a^2b+7ab^2+2b^3\)
Cho 2 số thực a,b thỏa mãn: lal khác lbl va ab khac 0 thoa man \(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
Tính P=\(\frac{a^3+2a^2b+2b^3}{2a^3+ab^2+2b^3}\)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
Cho a^3 -3ab^2 = 10 và b^3 - 3a^2b = 5. Tính: a^2 + b^2