Cho a,b,c thuộc Q và\(a\ne b\ne c\) CMR:
\(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\in Q\)
Chứng minh với mọi \(a,b,c\in R\) , \(a\ne b\ne c\ne a\) thì \(\frac{ab}{\left(a-b\right)^2}+\frac{bc}{\left(b-c\right)^2}+\frac{ca}{\left(c-a\right)^2}\ge\frac{-1}{4}\)
Cho 3 số dương a,b,c thỏa mãn \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}\\ \) và \(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\\ \)
chứng minh \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\\ \)
1) Cho a, b, c > 0. Chứng minh: \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2) Cho \(a,b,c\in R\).
a) Chứng minh: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)
b) Chứng minh: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)
3) Cho \(a,b,c\in R\)Chứng minh: \(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
C/m biểu thức
a)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)=1\)(a,b>0,a\(\ne\)0
b)\(\frac{a-b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=a-b\left(a,b>0,a\ne b\right)\)
c)\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)=4-a\left(a>0,a\ne1\right)\)
d)\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)=\left(1-a\right)^2\left(a\ge0,a\ne1\right)\)
Giải giúp mk với. THứ 3 tuần sau là phải nộp rồi
Cho a, b, c là các số thực dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{8}{9}\)
các bạn làm được ý nào thì làm ý đó nha
1. Cho a,b,c là độ dài 3 cạnh tam giác. Chứng minh:
a) \(\frac{1}{\left(a+b-c\right)^2}+\frac{1}{\left(a-b+c\right)^2}+\frac{1}{\left(b+c-a\right)^2}\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
b) \(\frac{1}{\left(a+b-c\right)^3}+\frac{1}{\left(a-b+c\right)^3}+\frac{1}{\left(b+c-a\right)^3}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\)
c) \(\frac{1}{\left(a+b-c\right)^{200}}+\frac{1}{\left(a-b+c\right)^{200}}+\frac{1}{\left(b+c-a\right)^{200}}\ge\frac{1}{a^{200}}+\frac{1}{b^{200}}+\frac{1}{c^{200}}\)
d) \(\frac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(-a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)}\)
e) \(a+b+c< \sqrt{a\left(b+c\right)}+\sqrt{b\left(a+c\right)}+\sqrt{c\left(a+b\right)}\)
f) \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}< \sqrt{6}\)
g) \(\sqrt{-a+b+c}+\sqrt{a-b+c}+\sqrt{a+b-c}\le\sqrt{3\left(a+b+c\right)}\)
Cho a,b,c >0, \(a\ne b\ne c\ne1\)
CMR: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}\)+\(\frac{\left(b+c\right)^2}{\left(b-c\right)^2}\)+\(\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\)>=2
cho a,b,c >0 chứng minh rằng \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}>=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^{ }}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)