ta có: b+c<a+b+c=> a/b+c>a/a+b+c(1)
a+c< a+b+c=> b/a+c>b/a+b+c(2)
a+b<a+b+c=> c/a+b>c/a+b+c(3)
cộng từng vế của 1, 2,3 ta đpcm
còn phần sau
đợi chút
Giải
Ta có :\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Suy ra đpcm
Có : \(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{a+b+c}< \frac{b}{c+a}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)
Cộng hết vô sẽ thu đc đpcm
vế phải:
ta có: a/b+c<a+a/b+c+a
tương tự: b/a+c<b+b/a+b+c
c/a+c<c+c/a+b+c
cộng từng vé ta đc đpcm
hok tốt nha
mik lười ghi hihi