Cho a,b,c>0 thoả mãn 1/a+1/b +1/c =4. Chứng minh 1/(2a+b+c ) + 1/(a+2b+c ) +1/(a+b+2c) =< 1
cho các số dương a, b, c thoả mãn abc=1. Chứng minh: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)
Choa,b là hai số thực dương thoả mãn (2a-1)(2b-1)=1 Chứng minh rằng \(\dfrac{1}{a^4+b^2\left(1+2a\right)}+\dfrac{1}{b^4+a^2\left(1+2B\right)}\le\dfrac{1}{2}.\)
1. Cho a,b,c là ba số dương. Chứng minh rằng:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
2. Cho ba số thực dương a,b,c thoản mãn abc=1. Chứng minh rằng:
\(\frac{4a^3}{\left(1+b\right)\left(1+c\right)}+\frac{4b^3}{\left(1+c\right)\left(1+a\right)}+\frac{4c^3}{\left(1+a\right)\left(1+b\right)}\ge3\)
Cho \(a,b,c>0\) thoả mãn abc=1
Chứng minh \(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
Cho a,b,c thực dương thoả mãn abc=1, chứng minh:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)
a+b+c+ab+bc+ca+abc=0 , a,b,c thuộc R thoả mãn làm P xác định
P=1/(3+2a+b+ab) + 1/(3+2b+c+bc) + 1/(3+2c+a+ca).CMR:P=1
a+b+c+ab+bc+ca+abc=0 , a,b,c thuộc R thoả mãn làm P xác định
P=1/(3+2a+b+ab) + 1/(3+2b+c+bc) + 1/(3+2c+a+ca).CMR:P=1