Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
1) Cho a^3 + b^3 + c^3 = 3abc . Với a, b, c khác 0 . Tính giá trị của biểu thức P= ( 1+a/b)( 1+b/c)(1+c/a)
2) Tìm số ngyên n sao cho : n^2 + 2n- 4 chia hết 11
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
cho a+b+c=1
a^2+b^2+c^2=1
a^3+b^3+c^3=1
Tính M=a^20+b^4+c^2018
cho a,b,c khác 0 sao cho a^3b^3+b^3c^3+c^3a^3=2a^2b^2c^2 . Tính M=(1+a/b)(1+b/c)(1+c/a)
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.