Kẻ AH⊥BC tại H, BK⊥AC tại K
Xét ΔAHB vuông tại H có
\(\sin\widehat{B}=\dfrac{AH}{AB}\)
Xét ΔAHC vuông tại H có
\(\sin\widehat{C}=\dfrac{AH}{AC}\)
Ta có: \(\dfrac{\sin\widehat{B}}{\sin\widehat{C}}=\dfrac{AH}{AB}\cdot\dfrac{AC}{AH}=\dfrac{AC}{AB}=\dfrac{b}{c}\)
\(\Leftrightarrow\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)(1)
Xét ΔABK vuông tại K có
\(\sin\widehat{A}=\dfrac{BK}{AB}\)
Xét ΔBCK vuông tại K có
\(\sin\widehat{C}=\dfrac{BK}{BC}\)
Ta có: \(\dfrac{\sin\widehat{A}}{\sin\widehat{C}}=\dfrac{BK}{AB}\cdot\dfrac{BC}{BK}=\dfrac{BC}{AB}=\dfrac{a}{c}\)
\(\Leftrightarrow\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{\sin\widehat{A}}=\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)