1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
Cho a,b,c thỏa mãn a^2 + b^2 + c^2 =1 Cm: abc+2(1+a+b+c+ab+ac+bc) lớn hơn bằng 0
Cho a, b, c dương thỏa mãn a+b+c bé hơn hoặc bằng 1
Tìm Min P=\(\frac{1}{a^2+b^2+c^2}\) +\(\frac{2019}{ab+bc+ca}\)
Cho a,b lớn hơn 0 thỏa mãn a+b lớn hơn hoặc bằng 1
Tìm min: (8a² +b)/4a +b²
cho x,y,z>0 thỏa mãn ab+bc+ca=3abc.Tìm min \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ac}{a+c+1}}\)
Bài 1: Cho 3 số a, b, c thỏa mãn a + b + c = 1
Cmr: \(\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)lớn hơn hoặc bằng \(\frac{3}{4}\)
Bài 2: Cho a, b, c là các số dương thỏa mãn b2 + c2 nhỏ hơn hoặc bằng a2. Tìm GTNN của biểu thức:
P = \(\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Cho a,b,c là 3 số dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ hơn hoặc bằng 3
Chứng minh rằng \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{1}{2}\left(ab+bc+ca\right)\)lớn hơn hoặc bằng 3
Cho ba số a,b,c thỏa mãn a lớn hơn bằng 1, b lớn hơn bằng 4 , c lớn hơn bằng 9 .tìm giá trị nhỏ nhất của biểu thức
P=(bc√(a-1)+ca√(b-4)+ab√(c-9))/abc
a,b,c>0 thỏa mãn ab+bc+ca=1
CMR \(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\) bé hơn hoặc bằng 1