ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
chứng minh bc/a + ca/b + ab/c lớn hơn hoặc bằng a + b + c ; a,b,c lớn hơn hoặc bằng 0
Cho a, b, c thỏa mãn: 0 nhỏ thua hoặc bằng a nhỏ thu hoặc bằng b nhỏ thu hoặc bằng c. Chứng minh:
a) a/b +b/c+c/a lớn hơn hoạc bằng b/a+c/b+a/c
b) c/a+b/c lớn hơn hoặc băng b/a+a/b
Cho a,b,c lớn hơn 0. Chứng minh ab/c+ bc/a+ ca/b lớn hơn hoặc bằng a+b+c
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
Cho a,b,c là các số lớn hơn hoặc bằng 0 và nhỏ hơn hoặc bằng 2 thỏa mãn a+b+c=3 chứng minh a^2+b^2+c^2 nhỏ hơn hoặc bằng 5
cho a,b,c,d lớn hơn 0
chứng minh rằng :a-d/d+b + d-b/b+c + b-c/c+a + c-a/a+d lớn hơn hoặc bằng 0
cho các số a, b, c > 0, chứng minh rằng a + b + c + 1/a + 4/b + 9/c lớn hơn hoặc bằng 12
Cho a, b, c > 0. Chứng minh rằng a (b^2+c^2) + b (c^2+a^2) + c (a^2+b^2) lớn hơn hoặc bằng 6abc
a^2 + b^2 + 1 lớn hơn hoặc bằng ab + a+b. Cho a+b+c=0. chứng minh a^3+b^3+c^3=3abc