1.cho 53 số nguyên tố khác nhau. chứng minh rằng luôn tìm được hai số mà hiệu của hai số này chia hết cho 210
2.giải phương trình :
x+2 √8x-x ²=4.(1+ √x)
3.cho a,b,c là số thực dương thỏa mãn a+b+c=3. tìm GTNN của biểu thức
P=a/b+b/c+c/a+3abc/ab+bc+ca
(chú thích:a/b=a phần b,...)
Cho a,b,c là 3 số thực dương thỏa mãn điều kiện a + b + c = 1
Tìm GTLN của biểu thức:
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
Cho a,b,c là 3 số thực dương thỏa mãn điều kiện a + b + c = 1
Tìm GTLN của biểu thức:
\(P=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}\)
Tìm giá trị nhỏ nhất của biểu thức P = a / bc + 2b / ca + 5c / ab , trong đó a,b,c là các số thực dương thỏa mãn a^2 + b^2 + c^2 = 6
cho các số dương a,b,c thỏa mãn :
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
tính giá trị của biểu thức M =\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
cho a,b,c là các số khác 0 thỏa mãn điều kiện ab/a+b=bc/b+c=ca/c+a.Tính giá trị của biểu thức(a-b)^3+(b+c)^3+(c-a)^3
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2
Cho các số thực a,b,c khác 0 thỏa mãn a+b+c=0. Tính giá trị biểu thức của H= ab/a^2+b^2-c^2+ bc/b^2+c^2-a^2+ ca/c^2+a^2-b^2