Cho a,b,c là các số hữu tỉ khác 0, đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).CMR
\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\)hữu tỉ.
Cho a,b,c là các số hữu tỉ đôi một khác nhau
\(CMR\) \(M=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(b-c\right)^2}\) là bình phương của 1 số hữu tỉ
Cho a,b,c là 3 số hữu tỉ thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)
\(CMR\)\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là bình phương một số hữu tỉ
Cho \(a+b+c=0;x+y+z=0;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(CM\) \(ax^2+by^2+cz^2=0\)
Với a,b,c là 3 số thực phân biệt đôi một .CMR:\(\left(a^2+b^2+c^2\right).\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{9}{2}\)
Bài 1:Cho a,b,c là các số nguyên đôi 1 khác nhau thỏa mãn a+b+c=2019.tính giá trị biểu thức
\(M=\frac{a^3}{\left(a+b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Bài 2:Cho \(a+b+c=0;P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(CMR\) \(P\cdot Q=9\)
Bài 3:Cho 3 số x;y;z đôi 1 khác nhau thỏa mãn x+y+z=0 và \(A=\frac{4xy-z^2}{xy+2z^2};B=\frac{4yz-x^2}{yz+2x^2};C=\frac{4xz-y^2}{xz+2y^2}\)
CMR A.B.C=1
Bài 1Cho 3 số hữu tỉ a,b,c thỏa man abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
CMR trong 3 số a,b,c có 1 số bằng bình phương số còn lại
Bài 2 Cho a,b,c là các số khác 0 thỏa mãn \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính giá trị biểu thức \(P=\left(1+\frac{1}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Chứng minh rằng: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
thách ai làm được . cho a,b,c là hằng số và đôi một khác nhau giải pt: \(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\) = 0
Chứng minh rằng: \(\frac{a}{\left(b-c^2\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\) = 0
1. cho 3 số a,b,c hữu tỉ khác nhau
C/m \(\frac{1}{\left(b-c\right)^2}\)+\(\frac{1}{\left(c-a\right)^2}\)+\(\frac{1}{\left(a-b\right)^2}\)bằng bình phương 1 số hữu tỉ.
2. Cho a,b,c hữu tỉ thỏa mản: abc=1
\(\frac{a}{b^2}\)+\(\frac{b}{c^2}\)+\(\frac{c}{a^2}\)=\(\frac{a^2}{c}\)+\(\frac{b^2}{a}\)+\(\frac{c^2}{b}\)
C/m 1 trong 3 số là bình phương số hữu tỉ.