Lời giải:
BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$
Áp dụng BĐT AM-GM:
$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$
$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên:
$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$
$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)
Ta có đpcm.