Cho tam giác ABC có độ dài 3 cạnh: BC = a, AC = b, AB = c, chu vi tam giác là 2P. Chứng minh:
\(\frac{P}{P-a}+\frac{P}{P-b}+\frac{P}{P-c}\ge9\)
Cho abc là 3 độ dài các cạnh của một tam giác có chu vi là 1 thỏa mãn a/1-a + b/1-b + c/1-c = 3/2.Chứng minh tam giác đó là tam giác đều.Giúp tớ nhanh nhé!Cảm ơn nhiều!
Cho ∆ABC vuông tại A, đường cao AH, AB = 3cm, BC = 6cm 1. Tính AH và chu vi của tam giác ABC 2. Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC a) Tính độ dài AH và chứng minh EF = AH b) Chứng minh EA.EB + AF.FC = EF²
Cho tam giác ABC ngoại tiếp đường tròn (I). Các cạnh AB, BC, CA tiếp xúc đường tròn (I) lần lượt tại D, E, F. Đặt BC = a, CA = b, AB = c
a, Chứng minh AD =
b
+
c
-
a
2
b, Gọi r là bán kính của (I). Chứng minh S A B C = p.r, trong đó p là nửa chu vi tam giác ABC
c, Gọi M là giao điểm của đoạn thẳng AI với (I). Tính độ dài đoạn thẳng BM theo a, b, c
Cho tam giác ABC có độ dài ba cạnh AB = c, AC = b, BA = a và p là nửa chu vi của tam giác. Đường tròn tâm I nội tiếp tam giác lần lượt tiếp xúc với BC, AC và AB tại D, E và F
a, Chứng minh (I) có bán kính r = (p – a)tan B A C ^ 2
b, Với B A C ^ = α, tìm số đo của góc EDF theo α
c, Gọi H, K lần lượt là hình chiếu của B,C trên EF. Chứng minh: ∆BHF:∆CKE
d, Kẻ DP vuông góc vói EF tại P. Chứng minh: ∆FPB:∆CEP và PD là tia phân giác của góc B P C ^
Cho tam giác ABC,góc A bằng 90 độ, AB=24 cm, AC=18 cm. Từ trung điểm M trên cạnh BC, kẻ đường vuông góc với BC, cắt AC tại D, AB tại E. a) Chứng minh DMC đồng dạng ABC và tính độ dài các cạnh của tam giác DMC ? b) Tính BE ?
Cho tam giác ABC có độ dài ba cạnh là AB,BC,AC lần lượt tỉ lệ với 3;5;7. Biết chu vi tam giác là 16,5. Tính các góc của tam giác ABC ( làm tròn đến phút)
Độ dài các cạnh của một tam giác ABC vuông tại A, thỏa mãn các hệ thức sau:
BC = AB + 2a (1)
AC = 1/2.(BC + AB) (2)
a là một độ dài cho trước
Cho tam giác ABC quay một vòng quanh cạnh huyền BC. Tính tỉ số diện tích giữa các phần do các dây cung AB và AC tạo ra
Độ dài các cạnh của một tam giác ABC vuông tại A, thỏa mãn các hệ thức sau:
BC = AB + 2a (1)
AC = 1/2.(BC + AB) (2)
a là một độ dài cho trước
Tính theo a, độ dài các cạnh và chiều cao AH của tam giác