๖ۣۜLuyri Vũ๖ۣۜ

Cho a,b,c là độ dài ba cạnh của tam giác. CMR :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\)

Trí Tiên亗
4 tháng 9 2020 lúc 15:14

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(đpcm\right)\)

Bất đẳng thức được chứng minh 

Bình luận (0)
 Khách vãng lai đã xóa
Huyen Trang
4 tháng 9 2020 lúc 15:16

Áp dụng BĐT Bunhiacopxki dạng cộng mẫu:

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi: \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Trí Tiên亗
4 tháng 9 2020 lúc 15:17

Do \(a,b,c\) là độ dài ba cạnh tam giác , \(a,b,c>0\)

\(\Rightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}}\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(\frac{a^2}{b+c-a}+b+c-a\ge2\sqrt{\frac{a^2}{b+c-a}.\left(b+c-a\right)}=2a\)

\(\frac{b^2}{c+a-b}+c+a-b\ge2\sqrt{\frac{b^2}{c+a-b}.\left(c+a-b\right)}=2b\)

\(\frac{c^2}{a+b-c}+a+b-c\ge2\sqrt{\frac{a^2}{a+b-c}.\left(a+b-c\right)}=2c\)

Cộng vế với vế của các BĐT cùng chiều ở trên ta có :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\).

Vậy BĐT được chứng minh !

Bình luận (0)
 Khách vãng lai đã xóa
ミ★Ƙαї★彡
4 tháng 9 2020 lúc 15:22

Áp dụng BĐT Bunhiacopxki dạng phân thức ta có 

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Đẳng thức xảy ra <=> \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyễn thị diệu linh
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
giang ho dai ca
Xem chi tiết
Nguyễn Trần Minh Nga
Xem chi tiết
Nhok_baobinh
Xem chi tiết
Bolbbalgan4
Xem chi tiết
Võ Trà Giang
Xem chi tiết
Trần Lê Quang Huy
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết