cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:
\(\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}+\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}+\frac{1}{\left(c+a+2\sqrt{b+c}\right)^3}\le\frac{8}{9}\)
Bài 1: Cho a,b,c là đọ dài 3 cạnh của 1 tam giác có chu vi bằng 4. CMR: \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\) + 8 > 9(\(\frac{1}{a+b}\) + \(\frac{1}{b+c}\) + \(\frac{1}{c+a}\))
Bài 2: Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR: \(\frac{a^2+b^2-c^2}{2ab}\) + \(\frac{b^2+c^2-a^2}{2bc}\) + \(\frac{c^2+a^2-b^2}{2ca}\) > 1
Tam giác ABC có các cạnh là: a,b,c. Gọi 2p là chu vi tam giác. CMR:
a) \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)
b) \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}>=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho 2p=18. Tìm GTNN của a2+b2+c2
Tam giác ABC có chu vi bằng 1 , các cạnh a,b,c thỏa mãn đẳng thức
\(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{3}{2}\) . Chứng minh tam giác ABC đều
Cho a,b,c > 0 và a+b+c=4. Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8>9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)
(P/s: các bạn giải nhanh hộ mk với !!!)
Cho a,b,c>0 thỏa mãn: a.b.c=8
Chứng minh: \(\frac{a^2}{\sqrt{\left(1+a^3\right).\left(1+b^3\right)}}+\frac{b^2}{\sqrt{\left(1+b^3\right).\left(1+c^3\right)}}+\frac{c^2}{\sqrt{\left(1+c^3\right).\left(1+a^3\right)}}\ge\frac{4}{3}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
cho a, b, c là các số thực dương thảo mãn abc=1 chứng minh rằng \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(a+1\right)\left(c+1\right)}+\frac{c}{\left(b+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\le\frac{3}{4}\)