Lên GG gõ bất đẳng thức Nesbitt nhé
\(P=\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Rightarrow\Delta ABC\) đều