cho a,b,c>0 tm abc=1. cmr \(\dfrac{1}{a^3\left(b+c\right)}\) + \(\dfrac{1}{b^3\left(c+a\right)}\) +\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
Cho a,b,c là các số thực; a,b,c ≠ 0 thỏa mãn:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}-\dfrac{a^3+b^3+c^3}{abc}=2\)
Tính giá trị biểu thức :
A = [ (a+b)2019 - c2019 ] [ (b+c)2019 - a2019 ] [ (a+c)2019 - b2019 ]
Cho a,b,c ,(a+b+c) là các số thực khác 0 thỏa mãn điều kiện: \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{matrix}\right.\)
Tính \(A=a^{2021}+b^{2021}+c^{2021}\)
Cho a,b,c là các số thực dương.CMR:
\(\dfrac{a^2}{a^2+b^2+c^2-bc}+\dfrac{b^2}{a^2+b^2+c^2-ca}+\dfrac{c^2}{a^2+b^2+c^2-ca}\le\dfrac{3}{2}\)
Cho a; b; c là số đo độ dài các cạnh một tam giác và 3b + 6c = abc
Chứng minh: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\ge4\)
cho các số thực `a,b,c` thỏa mãn `a+b+c=3`. Tính min \(P=\dfrac{a^2}{b+a}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+2}\)
Cho a, b, c là ba số dương thỏa mãn \(abc\)=1. Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}\)+\(\dfrac{1}{b^3\left(a+c\right)}\)+\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
cho a, b, c là số đo độ dài 3 cạnh một tam giác
chứng minh \(\dfrac{b+c}{b+-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\ge6\)