cho a,b,c là các số thực thỏa mãn \(a\ge b\ge c\),\(a+b+c=0\),\(a^2+b^2+c^2=6\)
tìm GTNN của a+b
với \(a,b,c\) là các số thực dương thỏa mãn \(a^2+b^2+c^2=3\),CMR
\(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{a+b+c}{2}\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
1,Cho các số a,b,c thuộc [-2;5] Thỏa mãn:
a+2b+3c<=2
CMR:\(a^2+2b^2+3c^2\le66\)
2,Cho a,b,c thuộc [0;2] ,a+b+c=3
CMR: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge\sqrt{2}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
cho \(a,b,c[-1;2]\) thỏa mãn : \(a^2+b^2+c^2=6\)CMR: \(a+b+c\ge0\)
Cho \(a,b,c\in\left\{-1;2\right\}\)thỏa mãn \(a+b+c=0\).CMR: \(a^2+b^2+c^2\le6\)
cho a,b,c>0 thỏa mãn abc=1.CMR\(\dfrac{a^3}{1+b}+\dfrac{b^3}{1+c}+\dfrac{c^3}{1+a}\ge\dfrac{3}{2}\)
Cho a, b, c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)