câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho a,b,c là ba số thực dương thỏa mãn điều kiện:\(a+b+c=1\)
Tìm giá trị lớn nhất của biểu thức:\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cho a, b, c là các số dương thỏa mãn: ab+bc+ca=abc. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)
Cho các số dương a,b,c thỏa mãn: \(a+b+c\le3
\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{1}{a^2+b^2+c^2}+\frac{2020}{ab+bc+ca}\)
Với là các số thực dương thỏa mãn đẳng thức \(ab+bc+ca=abc\)
Tìm giá trị nhỏ nhất của biểu thức: \(M=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\)
a) cho a,b,c > 0 thỏa mãn điều kiện : ab+bc+ca=1 chứng minh rằng :
\(a^3+b^3+c^3\ge\frac{1}{\sqrt{3}}\)
b) cho a,b,c>0 thỏa mãn điều kiện : a+b+c=3abc tìm giá trị nhỏ nhất của biểu thức :
\(\frac{1}{a^5}+\frac{1}{b^5}+\frac{1}{c^5}\)
giúp mik với .
Cho a,b,c là 3 số thực dương thỏa mãn\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) . Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{a+2017c}{a-c}+\frac{b+2017c}{b-c}\)
Cho a,b,c là các số thực dương thỏa mãn:ab+bc+ac=3abc
Tìm giá trị nhỏ nhất của biểu thức K=\(\frac{a^2}{c\left(cc+aa\right)}\)+\(\frac{a^2}{a\left(aa+bb\right)}\)+\(\frac{c^2}{b\left(bb+cc\right)}\)