Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jenny phạm

Cho a;b;c là các số thực khác 0 thuộc R

tìm x; y;; z khác 0 sao cho

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

Nguyệt
17 tháng 12 2018 lúc 12:16

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}=\frac{z}{c}+\frac{x}{a}\)

\(\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{z}{c}\\\frac{z}{c}+\frac{x}{a}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}+\frac{y}{b}=\frac{z}{c}+\frac{x}{a}\Rightarrow\frac{y}{b}=\frac{z}{c}\end{cases}}\Rightarrow\frac{x}{a}=\frac{z}{c}=\frac{y}{b}.\text{đăt}k=\frac{x}{a}=\frac{z}{c}=\frac{y}{b}\Rightarrow x=ak,z=ck,y=bk\)

ta có: \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{k^2.\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)}=k^2\Rightarrow k^2=2k\Rightarrow k^2-2k=0\Rightarrow k.\left(k-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}\text{mà a,b,c và x,y,z khác 0. }\Rightarrow k=2\Rightarrow x=2a,y=2b,z=2c}\)

p/s: bài nì khó chơi vc =.=" sai sót bỏ qua ^^'

tại sao k^2 lại bằng 2k

Khách vãng lai đã xóa

Vì x, y, z khác 0

=> xy khác 0 ; yz khác 0  ;  zx khác 0

Theo bài ra ta thấy : đổi chỗ của tử số và mẫu số thì đẳng thức vẫn xảy ra nên ta có:

ay+bx/xy=bz+cy/yz=cx+az/zx=a^2+b^2+c^2/x^2+y^2+z^2                                        (3)

=>a/x    +    b/y   =    b/y     +    c/z    =       c/z     +    a/x

=>  a/x  =  b/y  =c/z

Đặt   a/x  =   b/y   =    c/z  =  k ta suy ra

x=ak; y=bk, z=ck

Ta có : 

ay+bx/xy =  a.bk+b.ak/ak.bk  =   2.abk/abk.k =  2/k                                       (1)

Lại có : a^2+b^2+c^2/x^2+y^2+z^2

          =  a^2+b^2+c^2/k^2 ( a^2 +b^2 +c^2 )

         =1/k^2                                                                                                    (2)

(1)(2)(3) => 2/k = 1/k^2

             =>k^2/k=1/2

             =>k=1/2

Với k=1/2  =>x=  1/2 .a ; y  = 1/2  b  ;  z= 1/2 .c

Vậy với mọi x, y, z thỏa mãn điều kiện trên thì mọi kết quả đều đúng.

Hãy bày tỏ cảm xúc và bài làm của mình nha.Trân thành cảm ơn.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đinh Thị Thảo Vi
Xem chi tiết
Cô Nàng Lạnh Lùng
Xem chi tiết
lê dạ quynh
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Việt Hoàng
Xem chi tiết
Lê Quốc Vương
Xem chi tiết
Nguyễn Quang Trung
Xem chi tiết
Mai Thanh Tâm
Xem chi tiết
Phan Thanh Tú
Xem chi tiết