bài này đùng Shinra nhé
ưu điểm của shinra : rất khó tìm ra lỗi sai , nếu vừa nói vừa làm thì có thể thầy cô cũng ko nhận ra :)
nhược điểm : nếu bị để ý kĩ thì SM luôn đấy :)
áp dụng BDT cô si ta có :
\(a+1+1\ge3\sqrt[3]{a}.\) tương tự với các mẫu còn lại
vì nó năm ở dưới mẫu dấu > thành dấu <
\(vt\le\frac{1}{3\sqrt[3]{a}}+\frac{1}{3\sqrt[3]{b}}+\frac{1}{3\sqrt[3]{c}}.\)
\(abc=1\Leftrightarrow a=\frac{1}{bc}\)
\(VT\le\frac{1}{\frac{3}{\sqrt[3]{bc}}}+\frac{1}{\frac{3}{\sqrt[3]{ac}}}+\frac{1}{\frac{3}{\sqrt[3]{ab}}}=\frac{\sqrt[3]{bc}+\sqrt[3]{ac}+\sqrt[3]{ab}}{3}\)
có \(a+b+C\ge3\sqrt[3]{abc}=3\) ( abc=1) ( nhớ kĩ cái này là chìa khóa để rứt điểm bài này ko được quên nha )
nhân cả tử cả mẫu cho 3 ta được
\(VT\le\frac{3\sqrt[3]{bc}+3\sqrt[3]{ac}+3\sqrt[3]{ab}}{9}\)
\(3\sqrt[3]{b.c.1}\le\left(b+c+1\right)\) tương tự với các số hạng còn lại ta được
đến đây ta dùng Shinra nhé
\(VT\le\frac{2\left(a+b+c\right)+3}{9}=\frac{6+3}{9}=1\)