Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Tường Vy

Cho a,b,c là các số thực dương thỏa a+b+c=3 
CMR \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}< =5\)

Thanh Tùng DZ
31 tháng 10 2019 lúc 18:49

đặt \(A=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

\(2A=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}\)

\(2A=2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)

\(\le2a.\frac{b+1+b^2-b+1}{2}+2b.\frac{c+1+c^2-c+1}{2}+2c.\frac{a+1+a^2-a+1}{2}\)

\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)=ab^2+bc^2+ca^2+2\left(a+b+c\right)=ab^2+bc^2+ca^2+6\)

Không mất tính tổng quát, giả sử \(a\le b\le c\), ta có :

\(a\left(c-b\right)\left(b-a\right)\ge0\Leftrightarrow abc+a^2b\ge ab^2+a^2c\)

\(\Leftrightarrow a^2b+a^2c+bc^2\le abc+a^2b+bc^2\le2abc+a^2b+bc^2=b\left(a+c\right)^2\)

Mặt khác, theo BĐT Cô-si cho 3 số dương :

\(b\left(a+c\right)^2=4b.\frac{a+c}{2}.\frac{a+c}{2}\le\frac{4}{27}\left(b+\frac{a+c}{2}+\frac{a+c}{2}\right)^3=\frac{4}{27}.\left(a+b+c\right)^3=4\)

\(\Rightarrow2A\le10\Rightarrow A\le5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a\le b\le c;a+b+c=3\\abc=2abc\\2b=a+c\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
31 tháng 10 2019 lúc 19:27

cho mình sửa lại là cái đoạn giả sử \(a\le b\le c\)

mình sẽ giả sử \(\orbr{\begin{cases}a\ge c\ge b\\b\ge c\ge a\end{cases}}\) \(\Rightarrow b\left(a-c\right)\left(c-b\right)\ge0\)( cả 2 Th )

rồi giải ra tương tự như dưới ấy là được

Khách vãng lai đã xóa

Các câu hỏi tương tự
Thảo Ngân
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
minh nguyen
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Nguyễn Võ Anh Nguyên
Xem chi tiết
Ngo Anh
Xem chi tiết
fan FA
Xem chi tiết