Cho a,b,c là các số thực dương sao cho ab+bc+ac=3abc. C/m rằng: \(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}\le1\)
Cho \(a,b,c\)là các số thực dương thỏa mãn \(ab+bc+ac+abc=2.\)Tìm giá trị nhỏ nhất của biểu thức :
\(M=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
Cho a,b,c là các số thực dương. CHỨNG MINH RẰNG : \(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
cho a,b,c là các số thực dương. chứng minh rằng a^2b/ab^2+1 + b^2c/bc^2+1 + c^2a/ca^2+1 >= 3abc/1+abc
Cho 3 số thực dương a,b,c thỏa mãn a + b + c = 2. CMR:
\(\frac{ab}{\sqrt{2c+ab}}+\frac{bc}{\sqrt{2a+bc}}+\frac{ca}{\sqrt{2b+ca}}\le1\)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
(Đè thi vào lớp 10 chuyên toán)
cho các số thực dương a,b ,c thỏa mãn ab+ac+bc=abc.tìm gtnn của
P = \(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\)
Cho các số thực dương a,b,c thỏa mãn a2 + b2 + c2 = 1. Chứng minh:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ca-b^2}}>=2+ab+bc+ca\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2=1\). CMR:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)